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In this paper, we combine variable cell shape method with dynamic self-consistent field theory and
extend to study structure and dynamics under shear for triblock copolymer melts. Due to shear, the
calculation cell shape is variable and no longer orthogonal. Pseudospectral method is employed to
solve the diffusion equation for chain propagator on the nonorthogonal coordinate and the shear
periodical condition can be easily designed in terms of the variable cell shape method. By using this
strategy, the shear induced morphology evolution is investigated for topologically complex
polymeric systems such as linear and star triblock copolymers; the morphology of linear ABC
triblock copolymers is more shear sensitive than that of star triblocks. In particular, once the chain
propagator is obtained, the microscopic elastic stress and spatial stress distribution can be derived
and thus the dynamic mechanical property can be calculated under shear. By imitating the dynamic
storage modulus G� corresponding to any given morphology in the oscillatory shear measurements,
we explore the relationship between the morphology and the storage modulus G� and extend to
study the mechanism of phase separation dynamics as well as order-disorder transition �ODT� for
linear and star triblock copolymers. The results show that the chain architecture can be easily
distinguished by investigating the ODT, though the systems such as AB symmetric diblock and ABA
triblock copolymers by coupling AB precursors almost exhibit similar microstructures. In addition,
the storage modulus G� and loss modulus G� can be simultaneously determined in frequency sweeps
of oscillatory shear measurements and the dependence of the moduli on phase separated patterns and
the chain topology is investigated. The simulation findings are in qualitatively agreement with the
experimental results. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2839306�

I. INTRODUCTION

Due to microphase separation, block copolymers can
self-assemble into a variety of ordered structures such as
lamellae �LAM�, hexagonally packed cylinders, and body
centered cubic spheres and more complex structures such as
gyroid �G� in melts and solutions.1 The self-consistent field
theory �SCFT� has been successful in predicting the equilib-
rium self-assembled morphologies of complex multiblock
copolymers in bulk2–4 due to the development of real-space
implementation of SCFT by Drolet and Fredrickson.5 Re-
cently, such a method has been extended to investigate the
aggregation behavior of AB diblock copolymers and ABC
triblock copolymers in solution.6 In contrast to equilibrium
microphase morphologies of block copolymers,7,8 however,
the behavior of block copolymer melts in out of equilibrium
such as under shear is not fully understood. In fact, the rhe-
ology and shear oriented morphology of phase separated
complex polymer fluids are of great importance due to the
wide area of industrial applications and its technological im-
portance in polymer processing. In particular, block copoly-

mers with different architectures result in different mor-
phologies and hence significant differences in
thermodynamics and rheological behavior.9

Although continuous media mechanics and powerful
molecular models especially the reptation model and its vari-
ous extensions have proven to be successful in theoretical
study of dynamics and rheology for homogeneous polymer
melts and solutions,10 they have not had similar success for
inhomogeneous system such as phase separated polymer
blends, block copolymers, etc. In this regard, phenomeno-
logical mesoscopic dynamic models known as the time de-
pendent Ginzburg–Landau �TDGL� theory and two-fluid
model have received much attention to deal with the vis-
coelastic behavior and dynamics along with the time evolu-
tion of morphologies and rheology in complex liquids under
external flows.11 Unfortunately, these models involve a large
number of phenomenological parameters, such as the de-
scription of stress, and are inevitably not easy to capture the
detail of the chain topology and difficult to introduce the
inhomogeneity to the flow field; hence, they are limited for
applications for complex multiblock copolymers. In contrast,
recently, much work has been done to address this problem
by combining the field theory with the dynamic method.
Ganesan and Pryamitsyn combined SCFT with Brownian dy-
namics to study the dynamics and rheology of inhomoge-
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neous polymer blends12 and polymer blend interfaces.13 A
dynamic variant of mean-field theory known as the dynamic
density functional theory proposed by Fraaije, combining the
generalized TDGL, has been demonstrated to be a powerful
method to describe the mesoscopic dynamics of inhomoge-
neous polymeric system.14 Accordingly, the advances of this
method have allowed one to investigate the morphology and
dynamical characteristics of block copolymers with different
architectures under flow,15 but the stress and strain variables
were not included in their model. On the other hand, SCFT
for dense polymer melts has been proven to be highly suc-
cessful in describing complex morphologies and mechanical
properties such as tensile modulus in block copolymers.16 In
particular, The introduction of strain field in the SCFT pro-
posed by Fredrickson17,18 allows investigating the mechani-
cal properties for inhomogeneous block copolymers. Re-
cently, the hydrodynamic effect was further incorporated in
the field theory to investigate the phase separation kinetics of
triblock copolymers in a submicron chanel.19 In contrast to
the phenomenological calculation of stress,20 SCFT consid-
ers the chain conformation and thus discerns topological
characteristics of the chain. Additionally, the recent variable
cell shape method in field theory simulations, which is pro-
posed by Fredrickson, allows the cell shape changes in order
to automatically relax the morphologies to a stress-free equi-
librium state.18 We suppose that this method could be used
for dealing with the phase behavior of in homogeneous poly-
mer system under shear.

The morphologies as well as dynamics of block copoly-
mers are strongly affected by topological constraints. In this
regard, our primary objective in this article is to present a
theoretical model based on the combination of the variable
cell shape SCFT method18 with dynamic SCFT �DSCFT�
scheme adopted by our group21 to investigate the morpholo-
gies and dynamic issues for phase separated multiblock poly-
mers such as linear and star triblock copolymers subjected to
shear. This modified DSCFT method not only can be used to
describe the dynamics of block copolymer melts under ex-
ternal shear but also can be used to obtain the microscopic
elastic stress according to the deformation and to study the
relationship between morphology and the rheological prop-
erties. To our knowledge, this is the first simulation to ob-
serve the morphology kinetics and the resulting mechanical
properties for block copolymers with a specific topological
structure. The simulation cell subjected to shear and cell de-
formation is strain controlled: therefore, the calculation cell
can be described according to the idea of variable cell shape
scheme and, moreover, internal stress and its distribution can
be expressed in terms of the single-chain propagator q�r ,s�
computed in the field-theoretic simulation.

II. THEORETICAL METHOD

SCFT is known to be an appropriate and accurate theory
to be used for simulating equilibrium morphologies of block
copolymers with different chain architectures such as linear
and star ABC triblock copolymers.2,3 DSCFT is the nonequi-
librium version of SCFT used for dealing with the dynamics.
In this section, we will mainly show how the variable cell

shape SCFT algorithm is combined with the modified
DSCFT to deal with the dynamics of ABC triblock copoly-
mers with different architectures under shear.

We consider linear ABC triblock copolymers of volume
V, containing n Gaussian chains. Each copolymer chain con-
sists of N segments with the block ratio fA, fB, and fC=1
− fA− fB for blocks A, B, and C, respectively. In order to
simulate nonequilibrium microphase separation kinetics un-
der external fields for complex architecture block copoly-
mers, the TDGL is combined with the SCFT, known as the
DSCFT, to describe the dynamics of inhomogeneous system.
In DSCFT, to embed the dynamic process, the phase separa-
tion kinetics under shear is assumed to obey the modified
TDGL equation for conserved order parameter,22

��I�x,t�
�t

= MI�
2�F��I�x��

��I
− v�x� · ��I�x,t� + �I, �1�

where �I�x , t� �I=A ,B ,C� represents the monomer density
fields of species I at position x and time t, MI is the segment
mobility coefficient of species I, which is assumed to be a
constant, and v�x� stands for the flow field. In our two-
dimensional �2D� simulations, the deformation is strain con-
trolled, the velocity direction is along the x axis, and the
velocity gradient direction is along the y axis, i.e., vx= �̇y
and vy =0 for simple steady shear and vx=�y� cos �t and
vy =0 for externally imposed oscillatory shear flow. �̇ is the
reduced shear rate �time derivative of the strain ��, � is the
amplitude of the oscillatory shear strain, and � is the angular
frequency. �I stands for the Gaussian thermal noise with the
zero mean and satisfies the fluctuation-dissipation relation.
�I�x�=�F��I�x�� /��I�x� represents the intrinsic nonequilib-
rium chemical potentials, where F��I�x�� is the free energy
functional, which is not easy to be accurately and systemati-
cally obtained by traditional phenomenological cell dynam-
ics simulations �phase-field model� especially for complex
block copolymers with a specific chain architecture. There-
fore, in DSCFT, the following trick is used to obtain the
chemical potentials of block copolymers.21 The hypothetical
external potentials UI�x� that act on the I species are intro-
duced to counterbalance the current chemical potentials
�I�x�, i.e., UI�x�=−�I�x�+��x�, which drives and updates
the current density profile �I�x , t� to an equilibrium state.
The Lagrange multiplier ��x� is chosen to be ��x�=	�1
−�A�x�−�B�x�−�C�x�� to ensure the incompressibility of
the system,

UA�x� = wA�x� − 
AB�B�x� − 
AC�C�x� ,

UB�x� = wB�x� − 
AB�A�x� − 
BC�C�x� , �2�

UC�x� = wC�x� − 
AC�A�x� − 
BC�B�x� ,

where 
IJ is the dimensionless Flory–Huggins interaction in
units of kBT and wI�x� is the self-consistent field exerted to
species I, which is determined by adjusting it iteratively with
the steepest descent method using Eq. �1� to coincide with
the density profiles �I�x , t� calculated by the SCFT equa-
tions.

In SCFT, the statistics of a copolymer chain are sub-
jected to a set of effective chemical potential fields wI which
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replace the actual interactions between different components
and are conjugated to the segment density fields �I of block
species I. The density profiles �I�x , t� are obtained through
the calculation of the characteristic single-chain propagator
q�x ,s� in the deformable cell due to shear. We follow the
variable cell shape method proposed by Barrat et al.18 to
describe the polymer morphological behavior in deformable
calculation cell due to shear deformation. The variable shape
cell is described by a 2�2 shape matrix h in 2D,

h = �hxx hyx

hxy hyy
� = �Lx Ly cos �

0 Ly sin �
�

for a 2D Lx�Ly cell, where Lx and Ly are side length of the
cell and � is the angle between adjacent sides, to hold all the
points R in Cartesian coordinates expressed as R=hx, where
x is a rescaled vector whose components lie in �0, 1�. Inte-
grals on R can be converted into integrals over x by using a
scaling factor det h �det h=V� representing the volume of the
calculation cell. A metric tensor constructed by G=hTh is
used to transform dot products from original Cartesian to
rescaled coordinates. Thus, for linear ABC triblock copoly-
mers, q�x ,s� is given by a modified diffusion equation

�q�x,s�
�s

=
b2

6

�G−1���2q�x,s�
�x��x

− ��A�s�wA�x,s�

+ �B�s�wB�x,s� + �C�s�wC�x,s��q�x,s� , �3�

with the initial condition q�x ,0�=1. b is the statistical seg-
ment length of chains of three species, � and  stand for two
orthogonal coordinates in original Cartesian and we take the
Einstein implicit summation notation for the repeated alter-
nate Greek indices, and �I�s� is 1 if s belongs to block I and
otherwise 0. Because the two ends of triblock chains are
distinct, a second end-segment distribution function q+�x ,s�
is further needed that can be similarly obtained with the right
side of Eq. �3� multiplied by −1, subjected to the initial con-
dition q+�x ,N�=1. The density of triblock copolymers is thus
obtained by

�A�x� =
V

NQ
�

0

NfA

dsq�x,s�q+�x,s� ,

�B�x� =
V

NQ
�

NfA

N�fA+fB�

dsq�x,s�q+�x,s� , �4�

�C�x� =
V

NQ
�

N�fA+fB�

N

dsq�x,s�q+�x,s� ,

where Q=�dxqK�x ,s�qK
+�x ,s� is the partition function of a

single chain. The extension to star ABC triblock copolymers
is straightforward.

In contrast to traditional TDGL, the above modified
DSCFT implicitly updates the chemical potential fields wI by
SCFT, which is capable of simulating the microphase sepa-
ration kinetics for various architecture block copolymers. In
addition, we note that hydrodynamic effects are not included
in this DSCFT scheme, which are important especially in the
low molecular weight system. Very recently, the hydrody-
namic effect was first incorporated in the field theory called

HSCFT by Hall et al. to simulate more realistic complex
fluid flows.19 However, in this paper, as a first step, we focus
on the simple shear induced aligned morphologies; the mac-
roscopic linear shear rate is chosen to overwhelm the hydro-
dynamic effect. Moreover, in the study of order-disorder
transitions, we aim at detecting the elastic response of or-
dered domains, and thus the segment diffusion terms are
switched off and hydrodynamic effects can be neglected. We
expect the hydrodynamics to have little effects on the study
of systems subjected to simple shear, and our simulation tests
confirmed this expectation.

Once the chain propagator is obtained, the elastic stress
for linear ABC triblock copolymer can be written18 as

��

�n/V�kBT
=

b2

6Q
h��

−1h�
−1 � dx��

0

N

dsq�x,s�
�2q+�x,s�
�x��x

+ �
0

N

dsq+�x,s�
�2q�x,s�
�x��x

	 . �5�

The free energy functional �in units of nKBT /V� is thus given
by

F = �1/V� � dx�
AB�A�B + 
BC�B�C + 
AC�A�C

− �A�A�x� − �B�B�x� − �C�C�x�

− ��1 − �A − �B − �C�� −
1

N
ln Q/V + V��:�� , �6�

where the last term in Eq. �6� is the contribution of stress �
and strain � to the free energy for an incompressible triblock
copolymer melt in a cell of variable shape, in which the
strain is given by �= 1

2 ��h0
T�−1G�h0�−1−1� and h0 is the origi-

nal cell shape of the simulation box before deformation.
According to the calculated stress in Eq. �5�, the storage

modulus G� and loss modulus G� in traditional oscillatory
shear tests can be derived by linear fitting the simulated
stress-strain curve as follows:

��
int = ��G� sin��t� + G� cos��t�� . �7�

In this simulation, we first only focus on the case that the
microphase separation process of block copolymers is decou-
pled with rheological measurements, and thus G�=0. The
storage modulus, therefore, can be obtained by analyzing the
stress-strain relation, i.e., G�=��

int / �sin��t���. Secondly, in
the frequency sweeps measurements, the diffusion �M �0� is
switched on and G� as well as G� can be derived by linear
fitting the simulated stress-strain curve of Eq. �7�.20,23

In Eqs. �1�, �3�, and �5�, the Laplacian operator
�G−1���2 /�x��x is required to be solved in nonorthogonal
coordinates when the simulation cell is deformed to paral-
lelogram from rectangle. The Laplacian in orthogonal coor-
dinates can be discretized by the Crank–Nicholson or the
alternating direction implicit �ADI� scheme in the real-space
implementation of SCFT. It is evident that this method is not
available in nonorthogonal coordinates. In this simulation, a
pseudospectral algorithm, first brought forward to solve the
single-chain propagator equation of SCFT by Tzeremes
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et al.,24 is borrowed to numerically solve the Laplacian in
nonorthogonal coordinates by using twice Fourier
transforms.18

Unlike the previous treatment of sheared periodical con-
ditions, i.e., Lee–Edwards boundary condition in molecular
dynamics simulations,25 it becomes convenient to solve nu-
merical breakdown problems due to the introduction of the
shape matrix for the variable shape cell. In the case of simple
steady shear, �̇ is the reduced shear rate scaled by the box
size hyy �Ly�, and the accordingly reduced strain � is the
deformation scaled by the box size. When shear is imposed,
in the time region �0� t�1 / �̇�, namely, within one integral
times the deformation of the box size, Eqs. �1�, �3�, and �5�
with Laplacian operator are solved in deformed cells, and the
beveled horizontal component of cell shape matrix becomes
hxy� =hxx��̇t accordingly. Then, we stop shear when the
strain is increased to the box size, t=1 / �̇, �=hxy /hxx=1, i.e.,
the beveled horizontal element of cell shape matrix becomes
hxy� =hxx�1, while the other matrix components are kept un-
changed. The data �I��r� ,1 / �̇� and �I��r� ,1 / �̇� on the res-
caled coordinate �x� ,y�� are transformed to �x�−Lx ,y� for
Lx�x��2Lx and thus h� is back to the orthogonal coordi-
nate again. Then, restart the shear by using the updated data
�I and �I as the next initial values and continue to deform
the new cell. When the strain is again increased to the box
size, the above described coordinate transformation will be
done. The periodical boundary condition under shear is thus
implemented by such iteration steps.

III. RESULTS AND DISCUSSION

The following simulations investigate the influence of
the chain architecture such as ABC linear and star triblock
copolymers on the microphase separation morphologies and
dynamic properties under shear by our modified DSCFT with
the variable cell shape method mentioned in the previous
section. Compared to diblock copolymers, the additional
block in triblock copolymers implies additional variables,
expands the phase complexity, and results in largely unpre-
dictable morphologies. Therefore, for the sake of simplicity,
we assume symmetric interactions between different blocks,
i.e., 
AB=
BC=
AC=
, and thus the effect of the copolymer
composition on the phase behavior is highlighted. The tri-
block copolymer chain lengths are set to be N=100. Reduced
shear rate for simple steady shear is �̇=10−3. In the large
strain amplitude oscillatory shear �LAOS�, the strain ampli-
tude is �=0.10–0.50 and the reduced frequency is �
=0.02–0.50. In the case of elastic modulus �G�� analysis, the
strain amplitude is fixed to be �=0.01 and the reduced fre-
quency �=0.02 to ensure that the system is in the linear
viscoelastic region. Due to the unbearable consumption of
time in three-dimensional �3D� calculation, the simulations
are carried out in a 2D 36�36 square lattice with the grid
size of �x=�y=1 nm. We note that the simulation is re-
peated with a reasonable range of calculation size to ensure
that these obtained morphologies are not influenced by the
lattice size. The morphology is indicated with different col-
ors, where blue, green, and red colors are assigned to A, B,

and C species, respectively. Hereafter, we use AxByCz with x,
y, and z representing the block ratio fA, fB, and fC, respec-
tively.

A. Effect of shear on the morphology

Figure 1 shows the oriented structure of ABC linear tri-
block copolymers compared to ABC star triblock copolymers
under simple steady shear �̇=1.0�10−3 with symmetric in-
teraction parameter 
=0.35. In the left column of Fig. 1 �L1
and S1� for A0.1B0.3C0.6, when the lengths of two minority
blocks A and B are evidently unequal, both linear and star
triblock copolymers prefer the A-B-C three-layer lamellae
�LAM3� structure, while the core-shell hexagonal lattice
�CSH� and LAM3 are the equilibrium morphology in quies-
cent condition for linear and star triblock copolymers, re-
spectively. Therefore, linear triblock copolymers are more
sensitive to the shear imposed than star terpolymers, as a
result of characteristic topological differences: in linear tri-
block copolymers, the minority A block is dispersed in the
middle of lamellae formed by block B to avoid extra contact
enthalpy with majority block C lamellae, while in star tri-
block copolymers, the A block is forced to locate at the B /C
interface due to the core chains that prefer lower extensions
of the core blocks and form the lamellae phase. In columns
�2� and �3� of Fig. 1, where the two immiscible minority
blocks �blocks A and B of A0.2B0.2C0.6 and A0.3B0.3C0.4� are
equal, the A-B-C three-layer LAM structure is still preferred
in linear ABC triblock, while star triblock copolymers form
multicompartmental lamellar structure with two minority
blocks A and B forming alternative lamellae in majority
block domains, as a result of the equivalent competences
along the shear direction of the two minority blocks in the
junction point. Especially for the equal composition of
A0.3B0.3C0.4, of which the equilibrium morphology in quies-
cent condition is the stable honeycomb phase, it still keeps a
similar honeycomb shape under moderate shear �̇=1.0
�10−3 and forms a multicompartmental lamellae structure
after further increasing the shear velocity to �̇=2.0�10−3

�not shown�. Therefore, the previous results suggest that
shear stabilizes the lamellae like structure and the morphol-

FIG. 1. �Color� The effect of steady shear on the morphology of linear ABC
triblock �top row� and star ABC triblock �bottom row� copolymers under
reduced shear rate of �̇=1.0�10−3. The block ratios from left to right col-
umns are A0.1B0.3C0.6, A0.2B0.2C0.6, and A0.3B0.3C0.4.
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ogy of linear triblock copolymers is more sensitive to the
external shear imposed than that of star terpolymers with the
same composition. This may be explained by the topological
differences that linearly connected blocks are more flexible
to the stretching force and more likely to be extended along
the shear direction, while the joint core in star terpolymers is
a stronger constraint subjected to shear, resulting in less sen-
sitive changes upon shear.

As discussed above, the shear has strong effect on the
morphology of linear ABC triblock copolymers. Vigild et al.
experimentally reported the effect of large amplitude oscilla-
tory shear on the alignment of a lamellae-forming pentablock
copolymer.26 They reported that the medium or large ampli-
tude preferred the perpendicular and transverse orientations.
Figure 2 presents the lamellae orientation subjected to the
imposed large strain amplitude reciprocating oscillatory
shear �LAOS� for A0.4B0.3C0.3 linear triblock copolymers
forming lamellae in quiescent condition. In order to obtain
the influence of shear on the morphology, the assigned oscil-
latory shear in Fig. 2 is applied in the start of phase separa-
tion and thus the shear and morphology evolution occur si-
multaneously. When the reduced frequency is relatively low,
such as �=0.02, at small strain amplitude in the linear vis-
coelastic region, the shear only induces the local orientation
leading to a partially ordered lamellae structure, shown in
Fig. 2�a�. As we increase the strain amplitude to �=0.25,
lamellae structure parallel to the shear direction �Fig. 2�b��
occur even with a very large strain amplitude �not shown
here� due to the large stretching strain along the shear direc-
tion. When the reduced frequency is increased to �=0.10,
the shear induced morphologies vary from slanted and
twisted lamellae �Fig. 2�c�� to perpendicular to the shear di-
rection lamellae �Fig. 2�d��. With further increasing the re-
duced frequency to �=0.25 and even to �=0.50, we observe
a lamellae structure perpendicular to the shear direction oc-
curring at the small strain amplitude �=0.1, shown in Figs.
2�e� and 2�g�, while the mixed morphology of lamellae per-
pendicular and parallel to the shear direction is observed, as
shown in Figs. 2�f� and 2�h�. In the extreme cases of Figure
2�i�, at �=0.60 and �=0.60, parallel lamellae are obtained as
a result of intensified horizontal stretching.

From the above observations, we conclude that increas-

ing the shear frequency always prefers perpendicular lamel-
lae, while increasing the shear amplitude would rather prefer
the parallel lamellar alignment along the shear direction.
Therefore, only parallel to shear direction lamellae can be
found at a relatively low shear frequency, while perpendicu-
lar lamellae occur at a high shear frequency with a small
amplitude. Moreover, mixed morphologies of parallel and
perpendicular lamellae take place at high frequency with me-
dium amplitude. When parallel stretching outweighs the per-
pendicular combinational preference in the large amplitude
and high frequency region, parallel lamellae are observed
again.

B. Morphology evolution and resulting mechanical
properties

Due to the importance of dynamic rheological properties
in the polymer processing, the phase separated morphology
with the resulting dynamic storage modulus G� is studied in
this section. In order to explore the influence of topological
differences on phase separation kinetics, the morphology and
corresponding rheological properties are presented. During
this process, the time evolution of phase separation and rheo-
logical analysis are decoupled, i.e., rheological measurement
is carried out to just obtain G� corresponding to a given
morphology in the quiescent phase separation process at ev-
ery particular time interval �such as 200–300 numerical steps
in our simulation�. Furthermore, strain amplitude and re-
duced frequency are set to be �=1% and �=0.02 to ensure
that the oscillatory shear measurement is in linear viscoelas-
tic regime. The diffusion term is switched off, i.e., M =0
during rheological measurement to avoid possible effect of
shear on the morphology evolution, and also we have con-
firmed that after the diffusion term is switched off, reduced
frequency will not affect G� in a wide linear viscoelastic
range, such as �=0.001–0.1. In addition, the loss modulus is
nearly zero under this simplification and only the storage
modulus may be determined.20

Figure 3 presents the topological effect of ABC triblock
copolymers on the time evolution of G� and phase separated
morphologies at particular phase separation stage. The com-
parisons are taken among the same compositions of
A0.2B0.2C0.6 for linear ABC triblock copolymers with differ-
ent chain sequences and star ABC triblock polymers
A0.2B0.2C0.6, with equal interaction energies between each
species, i.e., 
=0.35. The terminal equilibrium structures re-
produce our previous simulated results using the static SCFT
method.2,3 The total modulus G� and the separate modulus
contributions GA� , GB� , and GC� from blocks A, B, and C, re-
spectively, are calculated. In A and C composition asymmet-
ric linear A0.2B0.2C0.6 triblock copolymer of Fig. 3�a�, the
system is quenched from a disordered state at time t=0. After
a short time until t�1500, as a result of both increases in
concentration fluctuations and specific interfacial areas dur-
ing the coarsening of domains, the moduli GA� , GB� , and GC�
increase rapidly, and so does the total modulus G�. Then,
with the concentration fluctuations being saturated, initially
formed domains are reorganized and separated from each
other to form ordered structures. It is interesting to note that
from t=1500 to t=2500, the moduli from blocks A and C

FIG. 2. �Color� The effect of simulated reciprocating oscillatory shear on
the orientation of lamellae formed by linear ABC triblock copolymer
A0.4B0.3C0.3. �a� �=0.10 and �=0.02; �b� �=0.25 and �=0.02; �c�
�=0.10 and �=0.10; �d� �=0.25 and �=0.10; �e� �=0.10 and �=0.25; �f�
�=0.50 and �=0.25; �g� �=0.10 and �=0.50; �h� �=0.25 and �=0.50; �i�
�=0.60 and �=0.60.
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simultaneously decrease after the peak value, indicating that
interfacial areas of blocks A and C reduce correspondingly;
moreover, modulus of blocks B keeps no dramatic changes.
We assume that during this period, phase separation of spe-
cies B is trapped at the interface between blocks A and C due
to the topological link of blocks B to A and C, resulting in
the modulus of blocks B being “frozen” at this stage of phase
separation. The possible phase separation kinetics can be that
majority blocks C are first separated from the mixed A and B
domains, then blocks A and B are further separated from
each other. In the intermediate stage of phase separation
�from t=2500 to t=5000�, the CSH structure is found and
blocks A and C are separated from each other, with B do-
mains covering A domains to avoid direct contacts from C
species. As a result, GA� and GC� continue to decrease, while
the B block is located between A and C and the amount of
A /B and B /C interfaces is not changed, but the interfaces
become clearer, leading to a slight increase in the GB� . At the
later stage of phase separation �t�7500�, a completely or-
dered CSH structure is formed and thus the modulus is sta-
bilized.

For symmetric composition with respect to blocks A and
C of a linear A0.2B0.6C0.2, as shown in Fig. 3�b�, i.e., by
changing the sequence of blocks B and C of Fig. 3�a�, three

moduli from three species A, B, and C simultaneously in-
crease to the peak value at t=2500. In contrast to Fig. 3�a�,
blocks A, B, and C phase separate synchronically and thus
the incubation time is longer than that of the case in Fig.
3�a�, resulting in three moduli increasing simultaneously due
to the symmetric end block composition. After the peak, the
moduli are quickly stabilized and two-interpenetrating-
tetragonal lattice phase �TET2� is formed with A and C in-
terpenetrating cylinders in the majority B matrix.2 For the
star triblock copolymer A0.2B0.2C0.6 with the same composi-
tion as Figs. 3�a� and 3�b�, it is also observed that three
species are simultaneously separated from each other and
three block moduli increase to peak values at t=2500, as
shown in Fig. 3�c�. After the modulus peak, lamellae phase
with B and C alternating beads �LAM+BD� is found and the
modulus is thus stabilized. This is similar to the case of Fig.
3�b�, but the terminal plateau modulus is smaller than that of
linear triblock copolymers as a result of the distinctive de-
crease of interfacial areas in star A0.2B0.2C0.6 compared to
linear A0.2B0.6C0.2. In Fig. 3�d�, the equilibrium octagon-
octagon-tetragon phase is observed for star A0.4B0.4C0.2, con-
sistent with our previous static SCFT simulations.3 It should
be noted that a similar modulus “trap mode” of the minority

FIG. 3. �Color� Phase separation morphology and corresponding G� �in units of nKBT /V� with time evolution at 
=0.35. �a� linear A0.2B0.2C0.6 �CSH�, �b�
linear A0.2B0.6C0.2 �TET2�, �c� star A0.2B0.2C0.6 �LAM+BD�, and �d� star A0.4B0.4C0.2 �octagon-octagon-tetragon phase�. G� ���, GA� ���, GB� ���, and GC� ���.
The inset shows corresponding morphologies at certain stage of phase separation.
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component C �the minority block C is gradually separated
from blocks A and B� is also observed in Fig. 3�d� for star
A0.4B0.4C0.2 to that of linear A0.2B0.2C0.6 with the minority
middle block B in Fig. 3�a�. However, this is not found in
Figs. 3�b� and 3�c�. The phenomena result from different
dynamical mechanisms of phase separation, as discussed in
Fig. 3�a�.

In addition, as mentioned in Sec. II, the storage modulus
G� and loss modulus G� can be simultaneously determined in
frequency sweeps when we do not close the diffusion �M
�0� in the simulation of rheological response. The typical
samples are taken from the terminal equilibrium states �evo-
lution time t=30 000� of equilibrium morphologies of Figs.
3�a�–3�c�. The plots of G� and G� versus � at strain ampli-
tude �=0.01 are shown in Fig. 4. To avoid the effect of shear
stress on the morphology evolution at extremely lower fre-
quency �lower shear stress�, the frequency sweeps are taken
between �=0.001 and 0.1, and the resulting G�, G� are av-
eraged by two shear directions �X and Y�. Although we did
not consider the time-temperature shift factor, Fig. 4 still
shows qualitatively the dependence of the moduli on phase
separated patterns and chain topology. As the morphologies
studied are in the intermediate segregation regime where
three blocks are phase separated from each other, the low
shear stress induced is mostly of elastic origin and the
changes of G� are more obvious than those of G�. It is inter-
esting to note that lamellar structures of star A0.2B0.2C0.6

�LAM+BD� and linear A0.4B0.4C0.2 �LAM3, not shown here�
all exhibit a typical solid response, i.e., less sensitive of G�
and G� to the frequency sweep and quite small G� in all
frequency regions, because lamellar structures are highly or-
dered and not able to be deformed much in the presence of
low shear stress. However, cylindrical structures of linear
A0.2B0.2C0.6 �CSH� and linear A0.2B0.6C0.2 �TET2� show a
typical solid response in the relatively high frequency region
and viscous responses in the relatively lower frequency
sweeping impact. In particular, the unexpected increase of

G� of linear A0.2B0.6C0.2 �TET2� in the relatively slow fre-
quency region ��=0.001–0.05� can be attributed to the flex-
ibility of �TET2� cylinders to the low shear stress.

Furthermore, it is interesting to note that local stress dis-
tribution originated from changes in the chain conformations
through the chain propagator according to Eq. �5� may be
calculated for ABC linear triblock and star triblock copoly-
mers. Figure 5 presents unique equilibrium morphologies of
LAM3, CSH phases in quiescent condition for linear ABC
triblock copolymers, and LAM+BD phases for ABC star tri-
block copolymers, as well as the corresponding distribution
of local stress tensor components. Figures 5�b� and 5�c�
show the spatial distribution of stress tensor component �XX

and stress profile of �XX close to the interfaces because the
lamellae perpendicular to the X axis only support the stress
along the X direction. From Fig. 5�c�, we also observe a
decrease of the stress at the center of interface and a slight
increase of stress a few lattices farther from the interface
which approaches zero to the interior of a lamellar domain.
These results are in accordance with the stress distribution in
diblock copolymers by Maniadis et al.27 As explained by
Maniadis et al.,27 the chain segments are stretched more than
average due to the repulsive interaction between different
block species in the interface region; the stress in this region
becomes large. Comparing the stress distribution of linear
triblock and star triblock copolymers with the same compo-
sition in Figs. 5�d�–5�i�, the axial stress tensor component
�XX in the CSH phase of linear A0.2B0.2C0.6 in Fig. 5�e� ex-
hibits a similar cylindrical stress distribution to that of asym-
metric diblock copolymers,27 with the maximal negative
value of stress at the outer B /C interface and maximal posi-
tive value of stress in the inner A /B interface. Another inter-
esting phenomenon is that the additional middle block B in-
troduces a wide zero stress space interval and serves more
like a thick stress-free interface. Stress tensor component �XY

plotted in Fig. 5�f� exhibits a symmetric nonorthogonal stress
distribution where the stress is mainly distributed along the
diagonal direction of the XY plane. In star A0.2B0.2C0.6

�LAM+BD phases in Fig. 5�g��, as shown in Fig. 5�h�, �XX

presents a characteristic alternating stress distribution; the
maximal negative value of stress is located at the minority
A /B interfaces where interfacial segments are strongly
stretched due to the incompatibility between blocks A and B,
and the maximal positive value of stress is observed in the
interior of cylindrical domains where segments of homoge-
neous blocks A �B� are compressed. Due to the horizontal
orientation of the lamellae and beads, the stress �YY �not
shown here� is mainly distributed in lamella/bead interfaces
where star junction points are located. Moreover, the non-
orthogonal stress component �XY of star A0.2B0.2C0.6 in Fig.
5�i� tends to distribute alternatively in the interfaces where
the junction points are located. From the above observations,
we may conclude that the stress with the maximal negative
value is located on the interfaces due to the strong repulsion
of each other of immiscible blocks in the interfaces.

FIG. 4. �Color online� Simulation results of G� and G� �in units of nKBT /V�
in frequency sweep measurement at strain amplitude �=0.01 for linear and
star ABC triblock copolymers �evolution time t=30 000 and 
=0.35�. Lin-
ear A0.2B0.2C0.6, G� ��� and G� ���; linear A0.2B0.6C0.2, G� ��� and G� ���;
star A0.2B0.2C0.6, G� ��� and G� ���.
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C. The ODT and OOT determined from dynamic
storage modulus

In the past two decades, numerous experimental and the-
oretical studies for block copolymers have been reported on
how the phase transitions, i.e., an order-disorder transition
�ODT� and order-order transition, depend on block composi-
tion and temperature.1,8 Rheological measurements are very
sensitive to identify the ODT and order-to-order transition

�OOT� �the transition from one ordered state to another� in
contrast to morphology transitions. However, as we are
aware, little theoretical work has been done on the simula-
tion of rheological measurements to derive the ODT in com-
plex topological block copolymers. The present method,
variable cell shape DSCFT, is able to correlate the structure
with dynamic storage modulus, thus providing us additional
means of studying ODT/OOT. In this work, the dependence

FIG. 5. �Color� Equilibrium phases
and corresponding distribution of
stress tensor components in ABC lin-
ear triblock copolymers A0.3B0.3C0.4

�top row�, A0.2B0.2C0.6 �middle row�,
and star ABC terpolymers A0.2B0.2C0.6

�bottom row�. The morphology density
is shown in �a� for LAM3, �d� for
CSH, and �g� for LAM+BD phases.
The corresponding stress tensor com-
ponents �XX �in units of nKBT /V� are
shown in the middle column and �XY

�in units of nKBT /V� are shown in the
right column, except that �c� presents
the stress profile of �XX �in units of
nKBT /V� close to an interface in �b�
for LAM3.
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of G� at a fixed frequency as a function of 
N corresponding
to the temperature due to the inverse relationship between
the temperature T and Flory–Huggins interaction parameter

 is simulated for ABC linear and star triblock copolymers.
We will show how this method can be used to obtain the
ODT.

In the study of order-to-disorder and order-to-order tran-
sitions of block copolymers, temperature sweep of storage
modulus G� and loss modulus G� during heating with a con-
stant rate was employed to investigate the ordering kinetics
of different morphologies in block copolymers. In our simu-
lations, temperature sweep is implemented by continuously
slowly decreasing the interaction parameter 
 at which the
phase separation is evolved to equilibrium, and subsequently
rheological measurement is carried out at fixed strain ampli-
tude �=0.01 and reduced frequency �=0.02. The G� vs 
 is
thus obtained and the 
 at which the slope of curve G� vs 

abruptly changes is labeled as 
ODT and 
OOT; corresponding
temperatures are TODT and TOOT. Additionally, the extremely
slow change rate in 
 ��
 / t=0.001 /1000� is chosen in our
simulations to ensure that each tested morphology is in near
equilibrium under corresponding segregation conditions. It
should be noted that from the experimental point of view, for
a highly asymmetric block copolymer, the ordering of the
microdomain during cooling from a disordered state to an
ordered state is very slow compared with the disordering of
the microdomain during the heating process from the ordered
state to the disordered state. Thus, in experiments, tempera-
ture sweep of G� during heating is more powerful to detect
the transition temperature, while in the simulation, cooling
and heating processes obtain almost the same temperature
sweep curves because the simulation is carried out under the
ideal circumstances and only considers the modulus related
to the given morphology.

Figure 6 presents the temperature sweep of G� during
heating �changes of Flory–Huggins �FH� interaction param-
eters from 
=0.25 to 
=0.02� for a symmetric AB diblock

with fA=0.5, ABA triblock with fA=0.5 and each A block
being of equal length, and ABA triblock copolymers by cou-
pling symmetric diblock precursor with 2N chain length. Al-
though these copolymers adopt similar microstructures �not
shown here�, the chain configurations are indeed different
which is evident in critical ODT values, as shown in Table I.
From Fig. 6 and Table I, the ODT for AB diblock copolymers
is 
ODT=0.105 at f =0.5 with N=100, which is consistent
with the theoretical phase diagrams8 and prediction of 
N
=10.5 for the symmetric diblock copolymer with f =0.50 by
Leibler based on random phase approximation theory.28 For
the case of A0.25B0.5A0.25 triblock with N=100 and
A0.25B0.5A0.25 triblock copolymers obtained by coupling two
symmetric AB diblocks, thus leading to N=200, the ODTs
are calculated to be 
ODT=0.185 and 
ODT=0.092, respec-
tively, very close to the literature predictions of 
N=18.29

Figures 7�a� and 7�b� present the temperature sweep of
G� during heating �changes of FH interaction parameters
from 
=0.70 to 
=0.0� for linear and star ABC triblock
copolymers, respectively. Figure 7�a� gives the 
 �tempera-
ture� dependence of G� during the dynamic temperature
sweep measurement for linear triblock copolymer
A0.5B0.1C0.4, showing initially a slowly gradual decrease in
G� until a significant drop of G� at 
=0.11. The precipitous
decrease in G� is therefore regarded as the 
ODT=0.11. This
result is almost the same with that of AB diblock copolymers
due to the low composition of middle block B in linear tri-
block A0.5B0.1C0.4.

Table I shows the 
ODT from the calculation of AB
diblock, ABA linear triblock, ABC linear triblock, and star
triblock copolymers with similar compositions. For linear tri-
block copolymers, we clearly find that 
ODT�A0.5B0.1C0.4�
�
ODT�A0.3B0.3C0.4��
ODT�A0.7B0.1C0.2�, which is in accor-
dance with the order in diblock copolymers of A0.5B0.5

�A0.6B0.4�A0.7B0.3. We attribute this to the specific mecha-
nism of phase separation dynamics in linear triblock copoly-
mers; the middle block �B� with the minority block �A or C�
will be first separated from the majority block �C or A�, and
then block B and block A or C are separated from each other.
Therefore, this can be understood very simply by considering
that the ODT of linear A0.3B0.3C0.4 behaves as that of diblock
A0.6B0.4, while for star triblock copolymers, the order is

FIG. 6. Simulated temperature sweep of G� �in units of nKBT /V� for sym-
metric AB diblock �f =0.5�, ABA triblock with each A block being of equal
length, and ABA triblock copolymers by coupling the symmetric AB diblock
precursor. The species are subjected to oscillatory shear flow at strain am-
plitude �=0.01 and reduced frequency of �=0.02. Three moduli are verti-
cally shifted by 3 decades for clarity.

TABLE I. Calculated 
ODT for block copolymers with different composi-
tions. Literature 
ODT values of diblock copolymers are labeled with aster-
isks in the bracket.

Block copolymers 
ODT

Diblock A0.5B0.5�N� 0.105�0.105*�
Triblock A0.25B0.5A0.25�N� 0.185�0.18*�
Triblock A0.25B0.5A0.25�2N� by 0.092�0.09*�
Coupling AB diblocks
Linear A0.5B0.1C0.4�N� 0.11
Linear A0.5B0.4C0.1�N� 0.12
Linear A0.3B0.3C0.4�N� 0.15
Linear A0.7B0.1C0.2�N� 0.17
Star A0.5B0.1C0.4�N� 0.14
Star A0.7B0.1C0.2�N� 0.20
Star A0.3B0.4C0.3�N� 0.22
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ODT�A0.5B0.1C0.4��
ODT�A0.7B0.1C0.2��
ODT�A0.3B0.4C0.3�.
In contrast to linear triblock copolymers, the ODT of star
terpolymers is generally higher than that of linear ones with
the same composition because the constraint of joint core in
star triblock copolymers is so strong compared to that in
linear triblock ones that star triblocks are not liable to phase
separate. Actually, this feature is also reflected in the previ-
ous discussion in Fig. 1, in which the response of linear
triblock copolymers on shear is stronger than that of the star
triblock ones.

As a result, in this scheme, the simulated mechanical
properties are able to monitor the scarcely perceivable mor-
phological transforms which introduce distinguishable
changes in G�. In particular, as the block copolymer ap-
proaches the ODT, the thermodynamic differences of differ-
ent chain architectures �such as symmetric AB diblock versus
ABA triblock copolymers by coupling AB diblocks� are al-
most indistinguishable in the strong-segregation regime,
however, become significantly evident. This is also experi-
mentally investigated by Gehlsen et al.30 Additionally, we

should note that this method is capable of predicting the
OOT, although it is not found in Fig. 7 due to 2D simulation
where more morphological transitions in 3D cannot be
obtained.

IV. CONCLUSIONS

To conclude, we introduce the variable cell shape
method into DSCFT, which may be used as a tool to inves-
tigate the dynamic and mechanical properties of a complex
inhomogeneous polymer system. The method adopted in this
article is capable of accounting for the inhomogeneity in-
duced changes in the chain conformations and their coupling
to the external field such as shear through the chain propa-
gator q�r ,s�. In other words, the nature of polymer chain is
explicitly taken into account in influencing the thermody-
namical and rheological properties of complex polymeric
system. According to the q�r ,s�, the distribution of local
stress tensor components can be obtained and thus the me-
chanical properties and rheology correlated with any given
complex phases may be calculated.

In this paper, the morphology evolution kinetics in the
presence of shear according to the chain conformation is in-
vestigated. In agreement with experiments, the chain topol-
ogy such as linear and star triblock copolymers has a large
influence on the structure and dynamics under external shear.
Linear triblock copolymers are more flexible to be oriented
and extended along the shear direction under shear, while the
morphology of star triblock copolymers exhibits less sensi-
tive change upon shear due to the joint core constraint. Pref-
erential lamellar orientation for the linear triblock copolymer
is observed under LAOS; increasing shear frequency always
prefers perpendicular lamellae, while increasing shear ampli-
tude would prefer the lamellae parallel alignment along the
shear direction. Furthermore, since the stress tensor is in-
cluded in this scheme, by coupling the stress formula in the
oscillatory shear measurements, phase separation evolution
and corresponding rheological properties are obtained. It is
interesting to note that for linear triblock copolymers, the
minority middle block B is often trapped in between the
interface of two other end blocks to phase separate, leading
to the modulus decrease of the middle block in the early
stage of phase separation. Similar trap mode can be observed
for star terpolymers with one minority block and two major-
ity blocks. Moreover, the storage and loss moduli G� and G�
can be simultaneously determined in frequency sweeps when
we do not switched off the diffusion in the simulation pro-
cess of rheological response. For ordered structure, the low
shear stress induced is mostly of elastic origin and the
changes of G� are more obvious than those of G�. Finally,
our method is further applied to the study of ODT. The simu-
lations show that the 
ODT of linear triblock copolymers is
smaller than that of star triblock ones. Extension of this
method to 3D with hydrodynamic effects and to inhomoge-
neous polymer nanoparticle composites and copolymers in
confinement is underway in the future work.

FIG. 7. Simulated temperature sweep of G� �in units of nKBT /V� for linear
ABC �a� and star ABC �b� triblock copolymers in oscillatory shear flow at
strain amplitude �=0.01 and reduced frequency of �=0.02. Data in �a�
A0.7B0.1C0.2, A0.3B0.3C0.4, A0.5B0.4C0.1, and A0.5B0.1C0.4 are vertically shifted
by 2, 4, 6, and 8 decades, respectively, for clarity; data in �b� A0.3B0.4C0.3,
A0.7B0.1C0.2, and A0.5B0.1C0.4 are vertically shifted by 2, 4, and 6 decades,
respectively.
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